Descendent theory for stable pairs on toric 3-folds

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Descendents for stable pairs on 3-folds

We survey here the construction and the basic properties of descendent invariants in the theory of stable pairs on nonsingular projective 3-folds. The main topics covered are the rationality of the generating series, the functional equation, the Gromov-Witten/Pairs correspondence for descendents, the Virasoro constraints, and the connection to the virtual fundamental class of the stable pairs m...

متن کامل

The 3-fold Vertex via Stable Pairs

The theory of stable pairs in the derived category yields an enumerative geometry of curves in 3-folds. We evaluate the equivariant vertex for stable pairs on toric 3-folds in terms of weighted box counting. In the toric Calabi-Yau case, the result simplifies to a new form of pure box counting. The conjectural equivalence with the DT vertex predicts remarkable identities. The equivariant vertex...

متن کامل

Toric Fano 3-folds with Terminal Singularities

This paper classifies all toric Fano 3-folds with terminal singularities. This is achieved by solving the equivalent combinatoric problem; that of finding, up to the action of GL(3, Z), all convex polytopes in Z which contain the origin as the only non-vertex lattice point. 0. Background and Introduction A toric variety of dimension n over an algebraically closed field k is a normal variety X t...

متن کامل

Nef and Big Divisors on Toric Weak Fano 3-Folds

We show that a nef and big line bundle whose adjoint bundle has non-zero global sections on a nonsingular toric weak Fano 3-fold is normally generated. As a consequence, we see that any ample line bundle on a nonsingular toric waek Fano 3-fold is normally generated. As an application, we see that an ample line bundle on a Calabi-Yau hypersurface in a nonsingular toric Fano 4-fold is normally ge...

متن کامل

The classification of smooth toric weakened Fano 3-folds

We completely classify toric weakened Fano 3-folds, that is, smooth toric weak Fano 3-folds which are not Fano but are deformed to smooth Fano 3-folds. There exist exactly 15 toric weakened Fano 3-folds up to isomorphisms.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Mathematical Society of Japan

سال: 2013

ISSN: 0025-5645

DOI: 10.2969/jmsj/06541337